Imaging nanometer-sized α-synuclein aggregates by superresolution fluorescence localization microscopy.

نویسندگان

  • M Julia Roberti
  • Jonas Fölling
  • M Soledad Celej
  • Mariano Bossi
  • Thomas M Jovin
  • Elizabeth A Jares-Erijman
چکیده

The morphological features of α-synuclein (AS) amyloid aggregation in vitro and in cells were elucidated at the nanoscale by far-field subdiffraction fluorescence localization microscopy. Labeling AS with rhodamine spiroamide probes allowed us to image AS fibrillar structures by fluorescence stochastic nanoscopy with an enhanced resolution at least 10-fold higher than that achieved with conventional, diffraction-limited techniques. The implementation of dual-color detection, combined with atomic force microscopy, revealed the propagation of individual fibrils in vitro. In cells, labeled protein appeared as amyloid aggregates of spheroidal morphology and subdiffraction sizes compatible with in vitro supramolecular intermediates perceived independently by atomic force microscopy and cryo-electron tomography. We estimated the number of monomeric protein units present in these minute structures. This approach is ideally suited for the investigation of the molecular mechanisms of amyloid formation both in vitro and in the cellular milieu.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct Observation of α-Synuclein Amyloid Aggregates in Endocytic Vesicles of Neuroblastoma Cells.

Aggregation of α-synuclein has been linked to both familial and sporadic Parkinson's disease. Recent studies suggest that α-synuclein aggregates may spread from cell to cell and raise questions about the propagation of neurodegeneration. While continuous progress has been made characterizing α-synuclein aggregates in vitro, there is a lack of information regarding the structure of these species...

متن کامل

A Simple Marker-Assisted 3D Nanometer Drift Correction Method for Superresolution Microscopy.

High-precision fluorescence microscopy such as superresolution imaging or single-particle tracking often requires an online drift correction method to maintain the stability of the three-dimensional (3D) position of the sample at a nanometer precision throughout the entire data acquisition process. Current online drift correction methods require modification of the existing two-dimensional (2D)...

متن کامل

Sequential Superresolution Imaging of Multiple Targets Using a Single Fluorophore

Fluorescence superresolution (SR) microscopy, or fluorescence nanoscopy, provides nanometer scale detail of cellular structures and allows for imaging of biological processes at the molecular level. Specific SR imaging methods, such as localization-based imaging, rely on stochastic transitions between on (fluorescent) and off (dark) states of fluorophores. Imaging multiple cellular structures u...

متن کامل

Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes.

Microscopic images of specific proteins in their cellular context yield important insights into biological processes and cellular architecture. The advent of superresolution optical microscopy techniques provides the possibility to augment EM with nanometer-resolution fluorescence microscopy to access the precise location of proteins in the context of cellular ultrastructure. Unfortunately, eff...

متن کامل

Photoactivated Localization Microscopy with Bimolecular Fluorescence Complementation (BiFC-PALM) for Nanoscale Imaging of Protein-Protein Interactions in Cells

Bimolecular fluorescence complementation (BiFC) has been widely used to visualize protein-protein interactions (PPIs) in cells. Until now, however, the resolution of BiFC has been limited by the diffraction of light to ∼250 nm, much larger than the nanometer scale at which PPIs occur or are regulated. Cellular imaging at the nanometer scale has recently been realized with single molecule superr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 102 7  شماره 

صفحات  -

تاریخ انتشار 2012